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Abstract

Experimental studies are a cornerstone of Machine Learning (ML) research. A common and
often implicit assumption is that the study’s results will generalize beyond the study itself,
e.g., to new data. That is, repeating the same study under different conditions will likely
yield similar results. Existing frameworks to measure generalizability, borrowed from the
casual inference literature, cannot capture the complexity of the results and the goals of
an ML study. The problem of measuring generalizability in the more general ML setting
is thus still open, also due to the lack of a mathematical formalization of experimental
studies. In this paper, we propose such a formalization, use it to develop a framework to
quantify generalizability, and propose an instantiation based on rankings and the Maximum
Mean Discrepancy. We show how this latter offers insights into the desirable number of
experiments for a study. Finally, we investigate the generalizability of two recently published
experimental studies.

1 Introduction

Experimental studies are a cornerstone of Machine Learning (ML) research. Due to their importance, the
community advocates for high methodological standards when performing, evaluating, and sharing stud-
ies (Hothorn et al., 2005; Huppler, 2009; Montgomery, 2017).

The quality of an experimental study depends on multiple independent aspects. First, the experimenter
should properly define the scope and the goals of the study. Particular attention must be given to the
choice of benchmarked methods and experimental conditions (Boulesteix et al., 2015; Bouthillier et al.,
2021; Dehghani et al., 2021). Second, the study should be reproducible by independent parties and hence
contain the necessary documentation. This aspect has recently drawn much attention due to the so-called
reproducibility crisis (Baker, 2016; Gundersen et al., 2023; Peng, 2011; Raff, 2023; 2021). Third, the results
of the study should be sensibly analyzed to draw conclusions regarding, for instance, the significance of
the findings (Benavoli et al., 2017; Corani et al., 2017; Demsar, 2006). Finally, the generalizability of a
study concerns how well its results are replicated under unseen experimental conditions, such as datasets
not considered in the study (National Academies of Science (2019); Findley et al., 2021; Pineau et al., 2021).
The latter two aspects are also known as the internal and external validity of a study. Generalizability and
significance, although sometimes confused, are two independent aspects of a study (Findley et al., 2021). On
the one hand, significant findings may not generalize to other conditions; on the other hand, results might
consistently be not significant.

Generalizability captures how close the results are between two different samples of experiments. Generaliz-
ability is, conceptually, closely related to model replicability. A model is ρ-replicable if, given i.i.d. samples
from the same data distribution, the trained models are the same with probability 1− ρ (Impagliazzo et al.,
2022). An experimental study is generalizable if, when repeated under different experimental conditions,
the results are similar with high probability (National Academies of Science (2019)). A quantifiable notion
of generalizability thus requires a formalization of experimental studies, of their results, and of similarity
between results.
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Significance, instead, captures how strong the findings are within the specific sample of experiments per-
formed. Multiple publications have shown how different choices of experimental conditions can lead to very
different results (Benavoli et al., 2017; Boulesteix et al., 2017; Bouthillier et al., 2021; Dehghani et al., 2021;
Gundersen et al., 2022; Mechelen et al., 2023). Some recent experimental studies have also reported this
phenomenon. Matteucci et al. (2023) highlight how previous studies, conducted under different conditions,
report different encoders as significantly better than others. Similarly, Lu et al. (2023) re-evaluated coreset
learning methods and found that all of the methods they considered did not beat a naïve baseline.

Quantifying generalizability can also help determine the appropriate size of experimental studies. While one
dataset is intuitively not enough to draw generalizable conclusions (unless all experiments have the same
outcome), 106 datasets likely are. Of course, such large studies are usually not practical: it is crucial to
determine the minimum amount of data needed to achieve generalizability. This principle also applies to
other experimental factors, such as initialization seed, task, or quality metric.

Our contributions are the following:

1. We introduce a novel measure-theoretic formalization of experimental studies.
2. We propose a quantifiable definition of the generalizability of experimental studies.
3. We develop an algorithm to estimate the size of a study to obtain generalizable results.
4. We analyze two recent experimental studies, Matteucci et al. (2023); Srivastava et al. (2023), and

show how well their results generalize.
5. We publish the genexpy12 Python module to repeat our analysis in other studies.

Paper outline: Section 2 discusses the related work, Section 3 formalizes experimental studies, Section 4
defines generalizability and provides the algorithm to estimate the required size of a study for generalizability,
Section 5 contains the case studies, and Section 6 describes the limitations and concludes.

2 Related work

We first discuss the literature related to the problem we are tackling, i.e., why experimental studies may
not generalize. Second, we overview the existing concept of model replicability, closely related to our work.
Finally, we show other meanings that these words can assume in other domains.

Non-generalizable results. It is well known that experimental results can significantly vary based on
design choices (Lu et al., 2023; Matteucci et al., 2023; Qin et al., 2023; McElfresh et al., 2022). Possible
reasons include an insufficient number of datasets (Dehghani et al., 2021; Matteucci et al., 2023; Alvarez
et al., 2022; Boulesteix et al., 2015) as well as differences in hyperparameter tuning (Bouthillier et al., 2021;
Matteucci et al., 2023), initialization seed (Gundersen et al., 2023), and hardware (Zhuang et al., 2022).
As a result, the statistical benchmarking literature advocates for experimenters to motivate their design
choices (Bartz-Beielstein et al., 2020; Mechelen et al., 2023; Boulesteix et al., 2017; Bouthillier et al., 2021;
Montgomery, 2017) and clearly state the hypotheses they are attempting to test with their study (Bartz-
Beielstein et al., 2020; Moran et al., 2023).

Replicability and generalizability in ML. Our work formalizes and extends the definitions of replica-
bility and generalizability given in Pineau et al. (2021) and National Academies of Science (2019). Intuitively,
replicable work consists of repeating an experiment on different data, while generalizable work varies other
factors as well—e.g., task, seed. In ML, these terms are usually associated to learning algorithms rather
than experimental studies. A generalizable model has small generalization error on unseen data (McElfresh
et al., 2022), while a replicable model learns the same parameters from different i.i.d. samples (Impagliazzo
et al., 2022). Model replicability is also linked to model stability, differential privacy, generalization error,
and global stability (Bun et al., 2023; Chase et al., 2023; Ghazi et al., 2023; Moran et al., 2023; Dixon et al.,
2023).

1https://anonymous.4open.science/r/genexpy-B94D
2The module will be published on PyPI after acceptance.
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Figure 1: Generalizability of the “checkmate-in-one” task (Example 3.1), as the probability that two sub-
studies yield similar results. A result is a distribution of rankings. Note that the design factor (m) is fixed,
while the generalizability factor (position) varies.

External validity. The external validity of a study is a well-studied concept in the context of causal
inference, its main applications being in the social and political sciences (Campbell, 1957). In general, the
external validity of a study performed concerns whether repeating a study on different samples affects the
validity of its findings. Generalizability, opposed to transportability, concerns the external validity of results
when the samples come from the same population (Findley et al., 2021). Existing methods assess the sign-
and effect-generalization of the treatment on some response variable (Egami & Hartman, 2023). They are
thus not applicable to our use-case of ML experimental studies, for which there is—arguably—no treatment
and no response variable.

3 Experiments and experimental studies

An experimental study is a collection of experiments comparing the same alternatives under different exper-
imental conditions. An experimental condition is a tuple of levels of experimental factors, the parameters
defining the experiments. The study aims at answering a research question, which defines its scope and goals.

Example 3.1. (The “checkmate-in-one” task, cf. Figure 1) An experimenter wants to compare three Large
Language Models (LLMs), the alternatives, on the “checkmate-in-one” task (Srivastava et al., 2023; Am-
manabrolu et al., 2019; 2020; Dambekodi et al., 2020). The assignment is to find the unique checkmating
move from a position of pieces on a chessboard: an LLM succeeds if and only if it outputs the correct move.
The experimenter considers two experimental factors: the number of shots, m, and the initial position on the
chessboard, pl. The experimenter wants to find if LLM a1 ranks consistently (in the same position) against
the other two LLMs when changing the initial position, for a fixed number of shots.

3.1 Experiments

An experiment evaluates all the alternatives under a valid experimental condition. The result of an experiment
is an element of some result space.

Alternatives. An alternative a ∈ A is an object evaluated in the study, like an LLM in Example 3.1. We
call A the finite set of alternatives considered in the study, with cardinality na.

Experimental factors. An experimental factor is anything that may affect the result of an experiment.
We use i to denote a factor, Ci the (possibly infinite) set of levels that i can take, c ∈ Ci a level of i, and
I the set of all factors. We adapt Montgomery’s classification of experimental factors (Montgomery, 2017,
Chapter 1) and distinguish between the held-constant, design, and generalizability factors of a study.
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• Held-constant factors are presumed not to significantly impact the results, they are hence out of the
study’s scope and are fixed to a single level; examples are “programming language” or “number of
cross-validated folds”.

• Design factors are expected to significantly impact the results and have a relatively small set of
levels; examples are “quality metric” or “number of shots”.

• Generalizability factors (Igen) have a larger number of levels. The experimenter wants to obtain
results that generalize to unseen levels of these factors; examples are “dataset” or “chessboard
position”.

The same factor may play different roles in different studies, according to the studies’ objectives (Mont-
gomery, 2017, Chapter 1). For instance, “seed” is a generalizability factor in reinforcement learning studies
such as Nauman et al. (2024), as it typically plays a large role in determining the performance of such
algorithms. On the other hand, “seed” is a held-constant factor in Matteucci et al. (2023), as the effect of
changing the seed is not of interest for the experimenters.

Experimental conditions. An experimental condition c is a tuple of levels of all experimental factors,
c = (ci)i∈I ∈ C ⊆

∏
i∈I Ci. We assume that all of the Ci’s are probability spaces (i,Fi, µi), and we endow

C with the product σ-algebra FC =
⊗

i∈I Fi and the product probability measure µC =
⊗

i∈I µi. For
instance, if i is “dataset” and Ci ⊆ Rk×d for some k, d ∈ N, then µi measures the probability of subsets of
Rk×d. If, instead, i is a held-constant factor with Ci = {c}, then µi is µi : {c} 7→ 1. The probability space
(C,FC , µC) is the universe of valid experimental conditions. In our formalization, it plays the role of the
sample space for the experiment function EQ (Section 3.2). Finally, we assume that (1) one can fix the levels
of the experimental factors independently, as long as the resulting experimental condition is in C; (2) the
experimental conditions perfectly model the experiment, i.e., there is a function (the experiment function)
mapping a condition into its unique result.

Example 3.1 (Continued). C = {(pl, m)}l,m, where pl is a legal configuration of pieces on a chessboard and
m is the non-negative number of shots.

Experimental results. We define the result space as (X ,BX ), where X is a separable topological space
and BX is the Borel σ-algebra on X . For instance, if the experimenter is interested in the raw performances
of the alternatives on some learning task, (X ,BX ) = (Rna ,BRna ).

Example 3.1 (Continued). As the goal of the experiment involves ranking the LLMs, the experimenter defines
the result of an experiment on (pl, m) as a ranking of the three LLMs, according to whether or not they
output the checkmating move. Suppose that only a1 and a2 output the correct move. Then, the result is
(0, 0, 1), where a1 and a2 are tied best.

3.2 Experimental studies

A study is defined by its research question Q, i.e., its scope and goals. The scope consists of the alternatives
A, the valid experimental conditions C, the generalizability factors Igen, and the result space X . The goal
specifies the kind of conclusion one is attempting to draw from the study. We propose a model of the goals
in Section 4.2.

Definition 3.1 (Research question). The research question is a tuple Q = (A, C, Igen,X , goals).

Example 3.1 (Continued). The research question of the “checkmate-in-one” study is as follows. The scope is
given by A = {a1, a2, a3}, C = {(pl, m)}l,m, Igen = {“position”}, and X the set of rankings of 3 alternatives.
The goal is “Is a1 consistently in the same position of the ranking?”

To model the results, we introduce the experiment function EQ :
(
C,FC , µC

)
→ (X ,BX ), which evaluates

all of the alternatives in A under a valid experimental condition. We also assume that EQ is a measurable
function or, equivalently, a random variable with sample space C. We can thus sample from EQ.
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Result of an experiment. The result of the experiment performed under experimental condition c is
EQ (c). The experiment is the act of applying EQ to an experimental condition. For instance, let’s say
an experimenter is ranking ML classifiers under multiple datasets, with cross-validation. If “dataset” is the
only experimental factor and c = d, then EQ (d) ranks the models according to their average cross-validated
performance on dataset d. If, instead, “fold” is also a factor, c = (d, f), then EQ ((d, f)) ranks the models
according to their performance on each fold independently. .

Result of a study. The result of the study on a research question Q is the distribution of EQ: since EQ

is not necessarily injective, we assign higher probability to those results that appear more often.
Definition 3.2 (Result of a study). The result of the study on Q is the pushforward probability induced by
the experiment function EQ,

PQ := EQ
∗ µC : BX → [0, 1]

Y 7→ µC
(

EQ−1(Y )
)

,

where EQ−1(Y ) =
{

c : EQ(c) ∈ Y
}
∈ FC is the preimage of Y .

Intuitively, the result PQ is a function mapping a measurable subset Y of X to the measure of the sets of
experimental conditions having Y as result. In practice, as C might be infinite or too large, one can only
run experiments under n experimental conditions and obtain a sample ÊQ

n ∼ PQ of size n. We call this an
empirical study of size n on Q and denote the empirical distribution of ÊQ

n with P̂Q
n . To keep the notation

clean and unless necessary, we omit Q.

4 Generalizability of experimental studies

The currently accepted definition of generalizability is the property of two independent studies with the
same research question to yield similar results, see National Academies of Science (2019) and Pineau et al.
(2021). Although intuitive, this notion is not practically useful as it cannot be assessed objectively. We thus
propose the following quantifiable definition of generalizability based on our framework (cf. Section 3.1)
Definition 4.1 (Generalizability). Let Q = (A, C, Igen,X , goals) be a research question, let P be the result
of the corresponding study, and let d be a distance between probability distributions. The n-generalizability
of the study on Q is

n-Gen (Q; ε) := Pr
X,Y ∼Pn

(d(X, Y ) ≤ ε) (1)

where ε ∈ R+ is a dissimilarity threshold. With an abuse of notation, we can have d accept samples as
inputs, in which case it compares their empirical distributions.

Intuitively, the n-generalizability is the probability, computed with resampling, for any two empirical studies
of size n on Q to yield “similar” results, as defined by d and ε. We discuss in Section 4.4 how to interpretably
choose a value for ε.

Definition 4.1 is very flexible and allows for different choices of the result space X , the goals, and the
distance d. The rest of this section proposes a particular instantiation, based on the Maximum Mean
Discrepancy (Gretton et al., 2006), which allows for different choices of the experimental space X and goals.

4.1 Experimental results: Rankings with ties

Experimental results can be formalized in different ways, such as raw performance metrics, time series, or
rankings. Among these, rankings are arguably one of the most natural forms:

(i) Rankings are already widely used for non-parametric tests such as Friedman, Nemenyi, and Conover-
Iman (Demsar, 2006; Conover & Iman, 1982).

(ii) Rankings do not suffer from experimental-condition-fixed effects, such as a dataset being inherently
easier to solve than another one. Even though there are multiple ways to deal with these effects, there
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is no preferred one in the literature. See, for instance, the consensus ranking problem (Matteucci
et al., 2023; Nießl et al., 2022).

(iii) Rankings allow the definition of interpretable kernels to formalize different goals of a study, as we
illustrate in Section 4.2.

We define rankings (with ties) in the following way.
Definition 4.2 (Ranking). A ranking r on A is a transitive and reflexive binary endorelation on A. Equiv-
alently, r is a totally ordered partition of A into tiers of equivalent alternatives. r(a) denotes the rank of
a ∈ A, i.e., the position of the tier of a in the ordering. W.l.o.g., we use Rna

for the space of rankings of na

alternatives.

4.2 Goals: Kernels

Goals act as lenses, focusing on specific aspects of the results that are of interest for the experimenter. For
instance, consider the goal in Example 3.1: “Is a1 consistently in the same position of the ranking?”. In this
case, the goal solely focuses on a1’s position in the rankings, ignoring the positions of a2 and a3. Changing
the goal of a study can thus heavily impact how the results are analyzed. Within our framework, we formalize
for goals as kernels on the result space, i.e., positive definite symmetric functions. We choose kernels as our
instantiation of distance, and thus of n-generalizability, depends on the MMD. As we will discuss in the next
Section, however, not every distance supports kernels or, in general, ways to include the goal of a study. In
the following, we describe three kernels for rankings, covering three representative goals.

Borda kernel. The Borda kernel is suitable for goals in the form “Is alternative a∗ consistently ranked
the same?”. It uses the Borda count, defined as the number of alternatives (weakly) dominated by a given
one (Borda, 1781). For a pair of rankings, we compute the Borda counts of a∗ and then take their difference.

κa∗,ν
b (r1, r2) = e−ν|b1−b2|,

where bl = |{a ∈ A : rl(a) ≥ rl(a∗)}| is the number of alternatives dominated by a∗ in rl and ν ∈ R+. The
Borda kernel takes values in [e−νna , 1]. If ν is too large compared to 1/|b1−b2|, the kernel is oversensitive and
will heavily penalize even small differences. On the contrary, if ν is too small, the kernel is undersensitive
and will not penalize deviations unless they are very large. As |b1 − b2| ∈ [0, na], we recommend ν = 1/na.

Jaccard kernel. The Jaccard kernel is suitable for goals in the form “Are the best alternatives consistently
the same ones?”. As it measures the similarity between sets (Gärtner et al., 2006; Bouchard et al., 2013),
we use it to compare the top-k tiers of two rankings.

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ ,
where r−1([k]) = {a ∈ A : r(a) ≤ k} is the set of alternatives with rank lower than or equal to k. The Jaccard
kernel takes values in [0, 1].

Mallows kernel. The Mallows kernel is suitable for goals in the form “Are the alternatives ranked consis-
tently?”. It measures the overall similarity between rankings (Jiao & Vert, 2018; Mania et al., 2018; Mallows,
1957). We adapt the original definition in (Mallows, 1957) for ties,

κν
m(r1, r2) = e−νnd ,

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discordant pairs and
ν ∈ R+. If a pair is tied in one ranking but not in the other, one counts it as half a discordant pair.
The Mallows kernel takes values in

[
exp

(
−2ν

(
na

2
))

, 1
]
. If ν is too large compared to 1/nd, the kernel is

oversensitive and it will heavily penalize even small differences. On the contrary, if ν is too small, the kernel
is undersensitive and will not penalize deviations unless they are very large. As nd ∈

[
0,
(

na

2
)]

, we recommend
ν = 1/(na

2 ).
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The following example illustrates the three kernels.
Example 4.1. Consider two rankings r = (0, 0, 0) and s = (0, 1, 1), where xj is the rank of the j-th alternative.
In r, all three alternatives are tied best in tier 0, while in s a1 is the best (in tier 0): a2 and a3 are tied worst
in tier 1. To understand their impact on generalizability, consider a study whose result is a distribution
assigning both r and s probability 1/2. For the goal corresponding to the Borda kernel, r and s answer the
research question consistently as a1 weakly dominates all alternatives in both rankings. Hence, the Borda
kernel takes a value of 1 and the study is perfectly generalizable. For the Jaccard and Mallows goals, instead,
the two rankings are either very different (κ1

j (r1, r2) ≈ 0.33) or slightly different (κ1/na
2

m (r1, r2) ≈ 0.72). Thus,
we conclude that the study is more generalizable w.r.t. the Mallows kernel than the Jaccard kernel.

4.3 Distance between experimental results: Maximum Mean Discrepancy

In the previous sections, we have formalized an experimental study, its results, and its goals. The last open
point before applying (1) in practice is a definition of d, a distance between probability distributions. Such a
distance should satisfy the following requirements. First, it should take into consideration the goal of a study.
Second, it should handle sparse distributions well: empirical studies are typically very small compared to
the number of all possible rankings, which grows super-exponentially in the number of alternatives.3 Third,
it should provide a way to indicate the amount of experiments needed to achieve n-generalizable results. A
distance satisfying the above requirements is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2006;
2012; Mania et al., 2018). Other related approaches, such as Rastogi et al. (2022) for rankings, are not able
to model the different goals a study may have.
Definition 4.3 (MMD). Let X be a set with a kernel κ, and let Q1 and Q2 be two probability distributions
on X . Let x = (xi)n

i=1 ∼ Q1, y = (yi)m
i=1 ∼ Q2.

MMD (x, y)2 := 1
n2

n∑
i,j=1

κ(xi, xj) + 1
m2

m∑
i,j=1

κ(yi, yj)− 2
mn

∑
i=1...n
j=1...m

κ(xi, yj).

Finally, there remains the choice of an appropriate ε∗ to use in (1), which is hardly interpretable. The
following result relates the range of the MMD and the infimum and supremum of the kernel.
Proposition 4.1. The MMD takes values in

[
0,
√

2 · (κsup − κinf)
]
, where κsup = supx,y∈X κ(x, y) and

κinf = infx,y∈X κ(x, y).

Using a similar approach, we propose to replace ε∗ with a condition on the desired minimum expected value
of the kernel:

ε∗(δ∗) =
√

2 (κsup − fκ(δ∗)), (2)

where fκ is a kernel-specific function and δ∗ is an interpretable parameter. We now discuss them for the
three kernels discussed in Section 4.2 with their recommended parameters.

• Borda kernel. δ∗ is |b1 − b2| /na, i.e., the difference between the fraction of dominated alternatives
between two rankings; fκb

(x) = e−x.
• Jaccard kernel. δ∗ is the Jaccard coefficient between the top-k tiers of two rankings; fκj (x) = 1− x.
• Mallows kernel. δ∗ is the fraction of discordant pairs; fκm(x) = e−x.

As a concrete example, achieving (α∗ = 0.90, δ∗ = 0.05)-generalizable results for the Jaccard kernel means
that, w.p. 0.90, the average Jaccard coefficient between two rankings drawn from the results is at least 0.95.

4.4 An estimate for the necessary number of experiments

When designing a study, the experimenter has to decide how many experiments to run in order to obtain
generalizable results. In other words, they need to choose a (minimum) sample size n∗ that achieves the

3Fubini or ordered Bell numbers, https://oeis.org/A000670.
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desired generalizability α∗ for a given threshold ε∗.

n∗ = min {n ∈ N : n-Gen (Q; ε∗) ≥ α∗} . (3)

Example 3.1 (Continued). The experimenter wants to obtain results in which, with probability 0.99, a1
dominates the same number of alternatives up to a difference of 1. This does not happen, for instance, if
a1 dominates all 3 alternatives in one ranking and just 1 (itself) in another one. They therefore choose the
Borda kernel with ν = 1/na, δ∗ = 1/3, and ε∗ =

√
2
√

1− e−0.33 as in (2). How many experiments are enough?

Let now εα∗

n be the α∗-quantile of the MMD. To estimate n∗, we use a linear dependency between log(n)
and log(εα∗

n ), which we have observed in our experiments; see, for instance, Figure 2. In particular, for any
distribution P and choice of α∗ ∈ [0, 1], there exist β0, β1 ∈ R, βi = βi(α∗,P), s.t.

log(n) = β1 log
(

εα∗

n

)
+ β0. (4)

Appendix A.3.1 provides a proof for the distribution-free case. In practice, however, estimates of n∗ made
with the distribution-free bound are over conservative, so we stick to the empirical formula. Equation (4)
suggests that one can use a small set of N preliminary experiments to estimate n∗, iteratively improving the
estimate by considering more experimental conditions. In practice, however, sampling a random experimental
condition often relies on a pre-fixed pool. This reflects the reality of many experimental studies, where the
experimenter defines the factors and their possible levels upfront. On this result is based Algorithm 1,
whose working is illustrated in Figure 2.

Algorithm 1 Estimate the necessary number of experiments
Require: α∗ ▷ desired generalizability
Require: δ∗ ▷ similarity threshold on rankings
Require: Q ▷ research question, Q = (A, C, Igen, κ)
Require: N ▷ number of initial experiments
Require: Nstep ▷ number of additional experiments
Require: nrep ▷ number of repetitions to estimate the distribution of the MMD

procedure EstimateNstar(α∗, δ∗, Q, N, nmax, nrep)
n̂∗

N ←∞
while N < n̂∗

N do
Run N experiments and get their results P̂N

ε∗ ← fκ(δ∗) ▷ cf. Section 4.4
nmax ← ⌊N/2⌋ ▷ we need two disjoint samples of size nmax from P̂N

for n = 1 . . . nmax do
mmds← empty list
for n = 1 . . . nrep do

sample without replacement (xj)2n
j=1 ∼ P̂N

x← (xj)n
j=1 ▷ split into disjoint samples

y← (xj)2n
j=n+1

append MMD (x, y) to mmds
end for
εα∗

n ← α∗-quantile of mmds
end for
fit a linear regression log(n) = β1 log

(
εα∗

n

)
+ β0

n̂∗
N ← β1 log(ε∗) + β0

N ← N + Nstep
end while
return n∗

N

end procedure
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Figure 2: Estimation of the desired number of experiments n̂∗
N (marked with ▲) from different amounts N

of preliminary experiments and n ∈ {1, . . . , ⌊N/2⌋}. The dashed lines represent α∗ = 0.9 (horizontal) and
ε∗ =

√
2/10 (vertical). We used real data from Matteucci et al. (2023) and the Jaccard kernel (Section 4.2).
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Figure 3: Number of necessary experiments n∗ to achieve generalizability for categorical encoders, for dif-
ferent desired generalizability α∗, similarity threshold δ∗, goals gi. The variation in the plot is due to the
combinations of design factors.

5 Case studies

5.1 Case Study 1: A benchmark of categorical encoders

We now evaluate the generalizability of a recent study (Matteucci et al., 2023) that analyzes the performance
of encoders for categorical data. The performance of an encoder is approximated by the quality of a model
trained on the encoded data. The design factors are “model”, “tuning strategy” for the pipeline, and “quality
metric” for the model, while the only generalizability factor is “dataset”. We impute missing values in the
results of the study by assigning the worst rank. We evaluate how well the results of the study generalize
w.r.t. three goals:
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Figure 4: Number of necessary experiments n∗ to achieve generalizability for LLMs, for different desired
generalizability α∗, similarity threshold δ∗, goals gi. The variation in the plot is due to the combinations of
design factors.

(g1) Find out if the one-hot encoder (a popular encoder) ranks consistently amongst its competitors,
using the Borda kernel with ν = 1/na.

(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.
(g3) Evaluate whether the encoders are ranked in a similar order, using the Mallows kernel with ν = 1/(na

2 ).

Figure 3 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95 and 0.05
respectively. The variance in the boxes comes from variance in the design factors. For example, the results
for the design factors “decision tree, full tuning, accuracy” have a different (α∗, δ∗)-generalizability than the
results for “SVM, no tuning, accuracy”. We observe on the left that—as expected—obtaining generalizable
results requires more experiments as the desired generalizability α∗ increases. We can also see that the
variance of the boxes increases with α∗, meaning that the choice of the design factors has a larger influence
on the achieved generalizability. This is also possibly due to tail effects in the estimation of the MMD. We
observe the same when decreasing δ∗, as it corresponds to a stricter similarity condition on the rankings.
In the rather extreme cases of α∗ = 0.7 or δ∗ = 0.3, even less than 10 datasets are enough to achieve
(α∗, δ∗)-generalizability.

Consider now goal g2 for two different choices of design factors: (A): “decision tree, full tuning, accuracy” and
(B): “SVM, full tuning, balanced accuracy”. Furthermore, let (α∗, δ∗) = (0.95, 0.05): we estimate n∗ = 28
for (A) and n∗ = 34 for (B), corresponding to the bottom and top whiskers of the corresponding box in
Figure 3. As both (A) and (B) were evaluated using n = 30 experiments, we conclude that the results of (A)
are (barely) (0.95, 0.05)-generalizable, while those of (B) are not. Hence, one should run more experiments
with fixed factors (B) to make the study generalizable.

5.2 Case study 2: BIG-bench — A benchmark of Large Language Models

We now evaluate the generalizability of BIG-bench (Srivastava et al., 2023), a collaborative benchmark of
Large Language Models (LLMs). The benchmark compares LLMs on different tasks, such as the “checkmate-
in-one” task (cf. Example 3.1), and for different numbers of shots. “Task” and “number of shots” are the
design factors. Every task has a number of “subtasks”, which is the generalizability factor. We stick to the
preferred scoring for each subtask. As the results have too many missing values to impute them, we only
consider the experimental conditions where at least 80% of the LLMs had results, and to the LLMs whose
results cover at least 80% of the conditions.

As before, we define three goals:

(g1) Find out if GPT3 (to date, one of the most popular LLMs) ranks consistently amongst its competi-
tors, using the Borda kernel with ν = 1/na.

10
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(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.
(g3) Evaluate whether the LLMs are ranked in a similar order, using the Mallows kernel with ν = 1/(na

2 ).

Figure 4 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95 and 0.05
respectively. Again, the variance in the boxes comes from variance in the design factors, i.e., the task and
the number of shots. As before, increasing α∗ or decreasing δ∗ leads to higher n∗. Unlike in the previous
section, n∗ for g2 greatly depends on the combination of fixed factors, as we now detail.

Consider now goal g2 for two different choices of design factors: (A): “conlang_translation, 0 shots”, and (B):
“arithmetic, 2 shots”. Furthermore, let (α∗, δ∗) = (0.95, 0.05). For this choice of parameters, we estimate
n∗ = 44 for (A), corresponding to the top whisker of the corresponding box in Figure 3. As the study
evaluates (A) on 10 subtasks, it is therefore not (0.95, 0.05)-generalizable. In fact, we estimate that this
would require 34 more subtasks. For (B), on the other hand, we estimate n∗ = 1: the best 2-shot LLM for
the observed subtasks is, for all of the 21 subtasks, PaLM 535b. Now, if any of the 44 LLMs were equally
likely to outperform the others, this would happen w.p. 1/44

21 ≈ 3e − 35. However, we argue that this is
not the case. In the context of our framework, we can instead say that the true results show that PaLM
535b is always the best one. At least, for the estimate of the true results that we obtain from running the
experiments on the 21 subtasks. It is therefore not unlikely for PaLM 535b to outperform the others, rather,
it’s certain. As the result of every single experiment is the same, even a study performed on one experiment
is perfectly (0.95, 0.05)-generalizable—in fact, it is (1, 0)-generalizable. In other words, our algorithm was
able to quantify in hindsight that a single experiment would have been enough to obtain generalizable results.
Of course, however, one cannot trust an estimate of n∗ based on only one experiment. The next section thus
investigates how the number of preliminary experiments influences the estimate of n∗.

5.3 How many preliminary experiments?

We assess the accuracy of our method (cf. Section 4.4) for estimating n∗ from N independent experiments.
Our procedure is as follows. First, we selected α∗ = 0.95 and δ∗ = 0.05. Second, we select a probability
distribution P on the set of rankings Rna , representing the true distribution of outcomes. Third, for various
values of n, we bootstrap the distribution of MMD(Pn,Pn) by repeatedly sampling independently from P.
We compute n∗ as in (3), i.e., as the minimum n guaranteeing (α∗, δ∗)-generalizability. Using synthetic
distributions allows us to sample as many results as needed. To evaluate our estimate, we generate N ∈
10, 20, 40, 80 samples and we estimate n∗ from the empirical distribution of results P̂N , using Algorithm 1.
We call the estimate n̂∗

N . This procedure is repeated across multiple distributions, with 100 repetitions per
distribution.

Figure 5 displays the relative error (n̂∗
N −n∗)/n∗: when greater (lower) than zero, it indicates the overesti-

mation (underestimation) of n∗. Although the specific results vary with the target objective (with goal g2,
corresponding to the Jaccard kernel, being particularly challenging to estimate), in general, n̂∗

N approxi-
mates n∗ within 50% in more than 75% of cases, even when N = 10. Consequently, our method provides
a reliable estimate of n∗ (or at least of its order of magnitude) from as few as 10 preliminary experiments.
Appendix B.1 contains additional details regarding the distributions and the results, as well as an application
to real data.

6 Conclusion

Limitations. We only investigated the instantiation of our framework based on the MMD, rankings, and
kernels for rankings. Keeping the MMD as the cornerstone of an instantation allows different result spaces
and goals while potentially maintaining crucial properties such as (4). In this regard, a close formula for
the coefficients in (4) would greatly benefit the computational efficiency and the theoretical understanding
of our framework.

Future work. First, incorporating information about the experimental conditions into the framework, for
instance, by including information about the datasets. This would allow to study other aspects of external
validity, such as transportability, as well as allow for active learning to choose the next experiments to run.
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Figure 5: Relative error of the prediction of n∗ from N preliminary experiments (n∗
N ) for the goals gi.

Second, based on our experiments in Section 5.3, we intend to provide guarantees and confidence intervals
on the convergence of n∗

N to n∗. Third, we dealt with missing evaluations by imputing them. Having
kernels that can handle missing evaluations might be beneficial. Fourth, rankings, despite their advantages,
do not consider the raw performance difference between alternatives. On the other hand, kernels for raw
performances (i.e., for vectors in Rna) lack an obvious interpretation as the goals of a study. Fuzzy rankings
may bridge this gap: performance differences are incorporated into the ranking and the existing kernels for
rankings might be adapted to them. Additionally, our framework assumes that all alternatives are evaluated
from all studies and under all conditions. Moving to partial rankings might solve the limitation. Finally, our
framework might help develop tools to identify cherry-picked result. For instance, one can isolate outliers
by comparing the results of multiple studies in a meta-analysis fashion.

Conclusions. An experimental study is generalizable if, with high probability, its findings will hold under
different experimental conditions, e.g., with unseen datasets. Non-generalizable studies might be of limited
use or even misleading. This paper is, to our knowledge, the first to develop a quantifiable notion for the
generalizability of experimental studies. To achieve this, we formalize experiments, experimental studies,
and their results, as well as define an instantiation—rankings and distributions over rankings. Our approach
allows us to estimate the number of experiments needed to achieve a desired level of generalizability in new
experimental studies. We demonstrate its utility showing generalizable and non-generalizable results in two
recent experimental studies.
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A Details for Section 4

A.1 Details for Section 4.2

This section contains the proofs to show that the functions introduced in Section 4.2 are kernels, i.e.,
symmetric and positive definite. As symmetry is a clear property of all of them, we only discuss their
positive definiteness. Our proofs for the Borda and Mallows kernels follow Jiao & Vert (2018): we define a
distance d on the set of rankings Rna

and show that (Rna
, d) is isometric to an L2 space. This ensures that

d is a conditionally positive definite (c.p.d.) function and, thus, that e−νd is positive definite (Schoenberg,
1938; Schölkopf, 2000). Our proof for the Jaccard kernel, instead, follows without much effort from previous
results. For ease of reading, we restate the definitions as well.
Definition A.1 (Borda kernel).

κa∗,ν
b (r1, r2) = e−ν|b1−b2|, (5)

where bl = # {a ∈ A : rl(a) ≥ rl(a∗)} is the number of alternatives dominated by a∗ in rl and ν ∈ R.
Proposition A.1. The Borda kernel as defined in (5) is a kernel.

Proof. Define a distance

d : Rna
×Rna

→ R+

(r1, r2) 7→ ∥b1 − b2∥ ,

where bl = {a ∈ A : rl(a) ≥ rl(a∗)} is the number of alternatives dominated by a∗ in rl. Now, (Rna
, d) is

isometric to (R, ∥·∥2) via the map rl 7→ bl. Hence, d is c.p.d. and κb is a kernel.

Definition A.2 (Jaccard kernel).

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ , (6)

where r−1([k]) = {a ∈ A : r(a) ≤ k} is the set of alternatives whose rank is better than or equal to k.
Proposition A.2. The Jaccard kernel as defined in (6) is a kernel.

Proof. It is already know that the Jaccard coefficients for sets is a kernel (Gärtner et al., 2006; Bouchard
et al., 2013). As the Jaccard kernel for rankings is equivalent to the Jaccard coefficient for the k-best tiers
of said rankings, the former is also a kernel.

Definition A.3 (Mallows kernel).
κν

m(r1, r2) = e−νnd , (7)

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discordant pairs and
ν ∈ R.
Proposition A.3. The Mallows kernel as defined in (7) is a kernel.

Proof. The number of discordant pairs nd is a distance on Rna
(Snell & Kemeny, 1962). Consider now the

mapping of a ranking into its adjacency matrix,

Φ : Rna
→ {0, 1}na×na

r 7→ (1 (r(i) ≤ r(j)))na

i,j=1 ,

where 1 is the indicator function. Then,

nd = ∥Φ(r1)− Φ(r2)∥1 = ∥Φ(r1)− Φ(r2)∥2
2
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where ∥·∥p indicates the entry-wise matrix p-norm and the equality holds because the entries of the matrices
are either 0 or 1. As a consequence, (Rna

, nd) is isometric to (Rna×na , ∥·∥2) via Φ. Hence, nd is c.p.d. and
κm is a kernel.

A.2 Details for Section 4.3

Proposition 4.1. The MMD takes values in
[
0,
√

2 · (κsup − κinf)
]
, where κsup = supx,y∈X κ(x, y) and

κinf = infx,y∈X κ(x, y).

Proof.

0 ≤ MMDκ (x, y)2 = 1
n2

n∑
i,j=1

κ(xi, xj) + 1
m2

m∑
i,j=1

κ(yi, yj)− 2
mn

∑
i=1...n
j=1...m

κ(xi, yj)

≤ 1
n2

n∑
i,j=1

κsup + 1
m2

n∑
i,j=1

κsup −
2

mn

∑
i=1...n
j=1...m

κinf = 2(κsup − κinf)

A.3 Details for Section 4.4

A.3.1 Distribution-free linear relation

Proposition A.4. Let εα
n be the α-quantile of the MMD for samples of size n. For any α ∈ [0, 1], there

exist β0, β1 ∈ R, βi = βi(α) and εα
n ≥ εα

n, s.t., for any distribution,

log(n) = β1 log (εα
n) + β0. (8)

Proof. The proof goes as follows. First, we find a close formula for εα
n using Gretton et al. (2012, Theorem

8). Then. we show the linear dependency in (8).

Let X and Y be iid samples of size n from an arbitrary distribution P and define the random variable
MMDn = MMD(X, Y ).

Pn ⊗ Pn

(
MMDn −

√
2κsup

n
> ε

)
< exp

(
− nε2

4κsup

)

(1)==⇒Pn ⊗ Pn (MMDn > ε′) < exp

−
n

(
ε′ −

√
2κsup

n

)2

4κsup


(2)==⇒Pn ⊗ Pn

(
MMDn > n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
< 1− α

(3)==⇒Pn ⊗ Pn

(
MMDn ≤ n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
≥ α (9)

where:

(1) Define ε′ = ε +
√

2κsup/n.

(2) Define 1− α = exp
(
−

n
(

ε′−
( 2κsup

n

))2

4κsup

)
and ε′ = n− 1

2

(√
− log (1− α) 4κsup +

√
2κsup

)
.
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(3) Take the complementary event.

By definition of α-quantile and (9), it is clear that εα
n ≥ εα

n.

Now, define
εα

n := n− 1
2

(√
− log (1− α) 4κsup

)
+
√

2κsup.

From (9), it follows that

n = (εα
n)−2

(√
−4κsup log (1− α) +

√
2κsup

)2

and, taking logarithms, that

log(n) = −2 log(εα
n) + 2 log

(√
−4κsup log (1− α) +

√
2κsup

)
.

Defining
β0 = log (2κsup) + log

(√
−2 log (1− α) + 1

)
β1 = −2

(10)

concludes the proof.

Remark. Proposition A.4 can be used to obtain a close-formula estimate for n∗, using β0 and β1 as in (10).
However, we have observed that this leads to overconservative estimates compared to the method described in
Section 4.4 (usually one or two orders of magnitude of difference). Hence, we recommend using Algorithm 1.

B Details for Section 5

B.1 Estimation of n∗ from N preliminary experiments

In this section, we discuss how accurately our method estimates n∗ from N independent experiments (cf.
Section 4.4). Recall that, for a research question Q with corresponding results P,

n∗ = min
{

n ∈ N : Pr
X,Y ∼Pn

(MMD(X, Y ) ≤ ε) ≥ α∗
}

,

where α∗ and ε∗ are the desired generalizability and dissimilarity respectively. We estimate n∗ by running
N preliminary experiments and using their results P̂N as an approximation for P (cf. Algorithm 1). We call
the obtained estimate n̂∗

N .

We evaluate our approach with the relative error (n∗−n̂∗
N )/n∗. A relative error greater (lower) than 0 means

that we are overestimating (underestimating) n∗.

B.1.1 Synthetic data

We experimented with two families of distributions.

Uniformna
The uniform distribution assigns the same probability to every ranking in Rna

. In our ex-
periments, we varied na from 2 to 15. Perhaps surprisingly, our estimate improved with the number of
alternatives, despite the distribution becoming more "complex".

m-Degeneratena The degenerate distribution assigns the same probability to m rankings in Rna . As m
approaches |Rna

|, the m-degenerate distribution becomes closer to a uniform. In our experiments, we fixed
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Figure 6: Relative error of the prediction of n∗ from N preliminary experiments (̂̂n∗
N ) for multiple synthetic

distributions and the three kernels introduced in Section 4.2.
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(a) Categorical encoders
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(b) LLMs

Figure 7: Relative error between the estimate of n∗ from N preliminary experiments and n∗
50.

na = 4 (|Rna | = 75) and experimented with m ranging from 75/8 ≈ 9 to 75/2 ≈ 37. This parameter doesn’t
seem to affect the results.

Figure 6 shows that there are no major discrepancies in the behavior of our estimate.

B.1.2 Real data

This section evaluates the influence of the number of preliminary experiments N on n∗. We consider, for
both case studies (cf. Section 5), the design factor combinations for which we have at least 50 experiments.
This results in 23 out of 48 combinations for the categorical encoders and 9 out of 24 combinations for the
LLMs. For each of those combinations and as we do not have access to the true value n∗, we consider the
estimate n∗

50 as the ground truth and observe how the estimates of n∗ for N < 50 differ. Figure 7 shows that
even N = 10 preliminary experiments provide an estimate within of 50% of n∗

50, validating the fact that our
method can return reasonably good estimates even for very small sample size.
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